Online Computing

Outline

- in this portion:
 - Requirements
 - Philosophy
 - Overview of Online System
 - Hardware architecture
 - Software architecture
- presented by Fritz Bartlett:
 - Controls and Monitoring
 - Test Beam efforts
- and then back to me:
 - ...other software components
 - Schedules and manpower

Requirements

- Functionality:
 - Control of detector
 - hardware settings
 - configuration
 - triggering
 - Monitoring of
 - hardware state
 - trigger operations
 - data flow
 - data content

Requirements (cont'd)

- Bandwidth:
 - 20 Hz @ 250 Kbytes/event5 Mbytes/sec
 - Upgrade path to 50 Hz
 12.5 Mbytes/sec
 - Burst rate of 100 Hz (local)
 25 Mbytes/sec
- These figures set the scale for the total Run II data volume. The targets for the Level 1 / Level 2 / Level 3 trigger rates are 10 kHz / 1 kHz / 20 Hz. The DAQ system needs to be capable of up to 50 Hz if the Level 3 rejection rate cannot be met. It might be expected that the full capacity will be used, putting a strain on offline resources. In the end, the DAQ rate may be tailored to match offline capacity.

Philosophy

- Learn from Run I
 - Similar architecture
- Beg, borrow, and steal...
 - EPICS, DART
- Follow the crowd...
 - UNIX host system
 - NT filter and control nodes
 - VXWORKS front ends
- Stay with the rest of $D\emptyset$
 - C++ (though will allow C, FORTRAN as needed)
 - DØ Code Management, Graphics,
 Databases, ...

Overview: Hardware

Overview: Software

Part 3 introduction...

- Run I Legacy
 - items that we have to live with...
- Online tools development
 - software upon which many applications are built
- Component list
 - the highlights only...
- Schedule and Manpower
 - the highlights and summary...

Run I Legacy

- Control system components:
 - Token Ring network
 - Shea/Goodwin 68K processors
 - 1553, Vertical Interconnect
 - DØ High Voltage system
- Mixed Ethernet and Token Ring network; mixed Front End systems; dual personality control system
- Data Path:
 - Level 3 infrastructure and architecture
- > Distributed processors with associated communication and control requirements

Tool Development

- Inter-task communication
 - Decision to use upgraded version of Run I Client/Server package
- Control & Monitoring
 - Evaluating EPICS in Test Beam; will integrate with Run I CDAQ
 - Basis for:
 - Downloading
 - Alarms
- Event Distribution, Data Logging
 - Evaluating DART in Test Beam

Component List

- Control & Monitoring Applications:
 - Hardware Database
 - Front End management
 - Gateway
 - High Voltage
 - Cryo, Gas control
 - Parameter Page
 - Clock Server
 - Alarm system
 - Data Logger
- System Performance Monitoring
- Accelerator interface

- Configuration and Run Control Applications:
 - "COOR"
 - User interface
- Data collection and monitoring:
 - Data logger
 - Tape manager
 - Trigger monitor
- Calibration:
 - in Front End
 - in Level 3
 - at Host
- Event Monitoring:
 - Event distribution
 - "EXAMINE"

Schedule

• Milestones:

-1997

Mar Test Beam operations

Jul COOR - trigger system protocols

Jul Version 1 Inter-task communication

Jul 1/6th hardware purchased

Oct Control & Monitor download path

Oct Level 1 Framework installation / minimal

trigger

-1998

Mar COOR - Level 2 protocols

Jun Readout VME to Level 3

Jun 2/6th hardware purchased

Aug Level 2 commissioning / extended trigger

-1999

Jan Readout VME to Host

Jun Active triggers

Jun 3/6th hardware purchased

Manpower Profile

Why not ____ ?

- Why not VMS?
 - Lab as whole moving away;
 diminishing expertise
 - Restricted source of tools EPICS,
 DART
- Why not FORTRAN?
 - Very little of core of Run I system was FORTRAN - it was mostly PASCAL
 - Not inherently a structured language;
 would need vendor extensions or would
 need to move to FORTAN 90; the
 latter considered as drastic as C++
 - Hard to find young people interested in FORTRAN